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Pré-requis
• Connaissances sur le logiciel R.
• Statistiques descriptives.
• Tests d’hypothèses et estimation.
• Un peu d’algèbre linéaire...

Bibiliographie
• R pour la statistique et la science des données, François Husson et al., Presses

Universitaires de Rennes.
• Probabilités, Analyse des données et Statistique, Gilbert Saporta, Editions

Technip.
• Le polycopié d’Arnaud Guyader.

https://perso.lpsm.paris/~aguyader/files/teaching/Regression.pdf


Objectifs
• Expliquer un lien possible entre différentes variables décrivant des phénomènes

physiques, biologiques, chimiques, etc...
• Prédire la valeur d’une variable réponse en fonction de variables explicatives.

Enseignement
• Partie 1 : Régression linaire (G. Franchi - 1 CM, 6 TDs).
• Partie 2 : Analyse de variance (ANOVA) (B.Mahieu - 1CM, 6 TDs).

Modalités d’évaluation
• 1 évaluation écrite pour la partie 2 : Analyse de variance.
• 1 projet pour la partie 1 : Régression linéaire.



1. La corrélation linéaire



Exemple (Investissement publicitaire)

On a recensé les ventes d’un produit cosmétique ainsi que le budget publicitaire
accordé à ce produit sur une durée de 36 mois.

Mois Budget Pub (e) Budget Pub mois précédent (e) Ventes (e)

1 22 742 - 200 392

2 22 133 22 742 204 989

3 24 875 22 133 208 374

4 27 493 24 875 212 876

5 23 128 27 493 229 645

6 43 434 23 128 216 858
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Exemple (Investissement publicitaire)

Ci-dessous, on a représenté ces valeurs sous forme de séries temporelles.
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Exemple (Investissement publicitaire)

Question : Existe-t-il un lien entre le budget publicitaire et le montant des ventes
réalisées?
• Le nuage de points présentant les ventes réalisées en fonction du budget

publicitaire ne montre pas de lien clair...

• Le coefficient de corrélation linéaire calculé pour ces deux variables est
d’ailleurs ρ ≈ 0, 21.
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Définition
Soient X et Y deux variables, dont on possède n observations x1, . . . , xn et y1, . . . , yn.

Le coefficient de corrélation linéaire entre les variables X et Y est

ρ =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2 ×
√∑n

i=1(yi − y)2

où x et y désignent les moyennes des observations des variables X et Y .

Remarques

• ρ est toujours compris entre -1 et 1 : −1 ⩽ ρ ⩽ 1.
• ρ mesure à quel point l’égalité Y = aX + b est vraie sur les observations :

◦ Si ρ = 1, on a Y = aX + b avec a > 0.
◦ Si ρ = −1, on a Y = aX + b avec a < 0.
◦ Si ρ = 0, les observations sont orthogonales (elles sont non corrélées).
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Exemple (Investissement publicitaire)

• On représente maintenant les ventes réalisées chaque mois en fonction du
budget publicitaire du mois précédent

• Le coefficient de corrélation linéaire calculé pour ces deux variables est
ρ ≈ 0, 88.

1. La corrélation linéaire 9



La corrélation ρ calculée entre X et Y est-elle significativement non nulle, ou cela
provient-il d’un effet d’échantillonnage?

On se retrouve dans le cadre du test statistique :

H0 : Cor(X ,Y ) = 0 contre H1 : Cor(X ,Y ) ̸= 0.

Propriété

Si le vecteur aléatoire (X ,Y ) est gaussien, on a sous l’hypothèse H0

ρ√
1−ρ2

n−2

∼ Tn−2

où Tn−2 désigne la loi de Student à n − 2 d.d.l.
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Remarque

On rejettera donc l’hypothèse nulle, au niveau α > 0, si

|ρ|√
1−ρ2

n−2

> tn−2(1 − α/2).
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Exemple (Investissement publicitaire)

On a les sorties R suivantes.
• Corrélation avec le budget publicitaire du même mois :

cor.test(df$`Budget Pub ()`,df$`Ventes ()`)

Pearson's product-moment correlation

data: df$`Budget Pub ()` and df$`Ventes ()`
t = 1.2587, df = 34, p-value = 0.2167
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.1262841 0.5045639

sample estimates:
cor

0.2110061

Ici, on ne rejette pas l’hypothèse nulle : les ventes ne semblent pas corrélées au
budget publicitaire du même mois (au seuil de 5%).
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Exemple (Investissement publicitaire)

• Corrélation avec le budget publicitaire du mois précédent :

cor.test(df$`Budget Pub mois précédent ()`,df$`Ventes ()`)

Pearson's product-moment correlation

data: df$`Budget Pub mois précédent ()` and df$`Ventes ()`
t = 10.829, df = 34, p-value = 1.46e-12
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.7765776 0.9377500

sample estimates:
cor

0.8804748

Ici, on rejette l’hypothèse nulle : les ventes sont significativement corrélées avec
le budget publicitaire du mois précédent (au seuil de 5%).
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2. La régression linéaire simple



2.1 Contexte et exemple

On souhaite dorénavant expliquer le lien linéaire pouvant exister entre deux
variables X et Y .

On souhaite également prédire la valeur de la variable Y en fonction de la variable
X .
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Exemple (Engrais et blé)

• On s’intéresse au lien entre la quantité d’engrais utilisé dans un champ de blé
(en Kg/ha) et le rendement de ce champ (en T/ha).

• On a ainsi mesuré ces deux quantités dans 50 champs.
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Exemple (Engrais et blé)

• Une étude rapide de la corrélation montre un lien linéaire significatif (au seuil de
5%) entre ces deux quantités.
Pearson's product-moment correlation

data: df_wheat$Engrais and df_wheat$Rendement
t = 16.983, df = 48, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.8724140 0.9574931

sample estimates:
cor

0.9259172

• On cherche à expliquer davantage le lien linéaire entre le rendement d’un
champ (valeurs yi ) et la quantité d’engrais utilisé (valeurs xi ).
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2.2 Modélisation
Modèle linéaire simple

• On suppose dans la suite que les observations y1, . . . , yn s’expliquent en
fonction des x1, . . . , xn selon le modèle

yi = β0 + β1xi + εi , 1 ⩽ i ⩽ n

où (β0, β1) ∈ R2 et les εi sont des variables aléatoires, appelées bruits.
• On suppose de plus que les bruits (εi)1⩽i⩽n :

◦ sont indépendants ;
◦ sont de même loi N (0, σ2) avec σ > 0.

Pour expliquer le lien entre les yi et les xi , il faut donc estimer les valeurs de
β0, β1 et σ.

Il s’agit du principe de la régression linéaire.
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2.3 Moindres Carrés Ordinaires (MCO)

Définition
On appelle estimateurs des moindres carrés ordinaires, notés β̂0 et β̂1, les
valeurs de β0 et β1 minimisant

n∑
i=1

(yi − β0 − β1xi)
2

i.e. (
β̂0, β̂1

)
= argmin

(β0,β1)∈R2

n∑
i=1

(yi − β0 − β1xi)
2.
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Schéma

Les estimateurs des MCO définissent la droite minimisant les écarts entre les observations et celle-ci.
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Propriété

Les estimateurs des MCO ont pour expressions

β̂1 =

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2
et β̂0 = y − β̂1x .

Remarque :
La droite des MCO, donnée par l’équation

y = β̂0 + β̂1x ,

passe toujours par le centre de gravité (x , y) du nuage de points ((xi , yi))1⩽i⩽n.
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En R, la régression linéaire par les moindres carrés se fait avec la fonction lm.

Exemple (Engrais et blé)

Reprenons le cas du rendement d’un champ de blé.

lm_wheat <- lm(data=df_wheat,formula = Rendement~.)
summary(lm_wheat)

Ici, on a β̂0 ≈ 2.05 et β̂1 ≈ 0.02.
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Lois des estimateurs des MCO

On a

β̂1 ∼ N (β1, σ
2
1) où σ2

1 =
σ2∑n

i=1(xi − x)2

et

β̂0 ∼ N (β0, σ
2
0) où σ2

0 = σ2

(
1
n
+

x2∑n
i=1(xi − x)2

)
.

Remarque :
Les estimateurs β̂0 et β̂1 sont non biaisés.

Théorème (Gauss-Markov)

Les estimateurs β̂0 et β̂1 sont de variance minimale parmi les estimateurs sans biais linéaires
en (yi)1⩽i⩽n.

Problème :
La valeur de σ2 est inconnue.
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2.4 Résidus

Définition

• Pour toute observation i ∈ {1, . . . , n}, on note

ŷi = β̂0 + β̂1xi

la valeur ajustée du modèle en xi .
• Les résidus de la régression sont définis pour tout i ∈ {1, . . . , n} par

ε̂i = yi − ŷi

= yi −
(
β̂0 + β̂1xi

)
.
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Remarque

Les résidus correspondent aux erreurs d’ajustement du modèle.
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Propriété

On a
n∑

i=1

(yi − y)2 =
n∑

i=1

(yi − ŷi)
2 +

n∑
i=1

(ŷi − y)2,

ou encore
SCT = SCE + SCR.

= +
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Définition
Le coefficient de détermination R2 du modèle est défini par

R2 =
SCE
SCT

= 1 − SCR
SCT

= (Dispersion expliquée par le modèle)/(Dispersion totale).

Remarques :
• C’est un nombre réel compris entre 0 et 1, représentant la proportion de

variance expliquée par le modèle.
• Ce coefficient permet de mesurer l’adéquation du modèle aux données.

Plus il est proche de 1, plus le modèle est adapté.
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Exemple (Engrais et blé)

Dans notre cas, on a R2 ≈ 0.8573 : la proportion de variance expliquée par le modèle est de 85,73%.

lm_wheat <- lm(data=df_wheat,formula = Rendement~.)
summary(lm_wheat)
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2.5 Lois des estimateurs avec variance estimée
Propriétés

• La statistique σ̂2 = 1
n−2

∑n
i=1 ε̂

2
i est un estimateur non biaisé de σ2.

• On a (n−2)σ̂2

σ2 ∼ χ2
n−2.

• σ̂2 est indépendante de β̂0 et β̂1.

Exemple (Engrais et blé)

Dans notre cas, on estime σ̂ ≈ 0.463.
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Lois des estimateurs avec variance estimée

• On note

σ̂2
1 =

σ̂2∑n
i=1(xi − x)2 et σ̂2

0 = σ̂2

(
1
n
+

x2∑n
i=1(xi − x)2

)

les estimateurs de Var(β̂1) et Var(β̂0).
• On a pour i ∈ {0, 1} :

β̂i − βi

σ̂i
∼ Tn−2

où Tn−2 désigne la loi de Student à n − 2 d.d.l.
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Remarque :
Ces propriétés permettent de construire des intervalles de confiance pour β0, β1 et σ2.

Propriétés

• Pour i ∈ {0, 1}, un intervalle de confiance pour βi au niveau 1 − α est donné par

IC(βi) =
[
β̂i − σ̂i × tn−2(1 − α/2) ; β̂i + σ̂i × tn−2(1 − α/2)

]
où tn−2(1 − α/2) désigne le quantile d’ordre (1 − α/2) de la loi de Student Tn−2.

• Un intervalle de confiance pour σ2 au niveau 1 − α est donné par

IC(σ2) =

[
(n − 2)σ̂2

cn−2(1 − α/2)
;
(n − 2)σ̂2

cn−2(α/2)

]
où cn−2(α/2) et cn−2(1 − α/2) désignent respectivement les quantiles d’ordres α/2 et
(1 − α/2) de la loi χ2

n−2.

2. La régression linéaire simple 31



Exemple (Engrais et blé)

• Dans notre exemple, on a β̂0 ≈ 2.05 et β̂1 ≈ 0.0194.

lm_wheat <- lm(data=df_wheat,formula = Rendement~.)
lm_wheat$coefficients

(Intercept) Engrais
2.04824563 0.01944231

• Des intervalles de confiance de niveau 0.95 pour ces valeurs sont donnés par

IC(β0) ≈ [1.80 ; 2.29] et IC(β1) ≈ [0.017 ; 0.022].

confint(lm_wheat,level=0.95)

2.5 % 97.5 %
(Intercept) 1.80437222 2.2921190
Engrais 0.01714052 0.0217441

2. La régression linéaire simple 32



2.6 Nouvelles prévisions

Supposons que l’on ait une nouvelle observation xn+1 de la variable explicative X ,
indépendante des observations x1, . . . , xn.

On cherche naturellement à prédire la valeur associée yn+1 de la variable Y par

ŷn+1 = β̂0 + β̂1xn+1.

Question : Comment mesurer l’incertitude sur notre prévision ŷn+1 ?
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Propriété

On note toujours ici : x = 1
n
∑n

i=1 xi .
• On a

yn+1 − ŷn+1√
σ̂2
(

1 + 1
n +

(xn+1−x)2∑n
i=1(xi−x)2

) ∼ Tn−2.

• On en déduit un intervalle de confiance de niveau 1 − α pour yn+1

IC(yn+1) =

[
ŷn+1 ± tn−2(1 − α/2)

√
σ̂2
(

1 +
1
n
+

(xn+1 − x)2∑n
i=1(xi − x)2

)]

où tn−2(1 − α/2) désigne le quantile d’ordre (1 − α/2) de la loi Tn−2.

2. La régression linéaire simple 34



Exemple (Engrais et blé)

• Supposons que dans 3 champs de blés différents, on ait utilisé 75 Kg, 130 Kg et 180 Kg
d’engrais par hectare.

• Ci-dessous, on présente les rendements estimés pour ces champs, avec leurs
intervalles de confiance au niveau 95%.

new_obs <- data.frame(Engrais = c(75,130,180))
predict(lm_wheat,newdata = new_obs,interval = "prediction")

fit lwr upr
1 3.506419 2.565659 4.447179
2 4.575746 3.630870 5.520621
3 5.547861 4.584710 6.511012
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2.7 Nullité des coefficients

Une question statistique d’intérêt :

Les paramètres β0 et β1 sont-ils significativement non nuls?

En effet, même si on a comme estimations β̂0 ̸= 0 et β̂1 ̸= 0, il se peut que l’on ait
pour les vraies valeurs β0 = 0 ou β1 = 0.

Remarque : Si β1 = 0, cela signifie que la variable X n’explique en fait pas la
variable Y (du moins linéairement...).
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Pour i ∈ {0, 1}, on considère le test d’hypothèses :

H0 : βi = 0 contre H1 : βi ̸= 0.

Propriété

• Sous l’hypothèse nulle H0, on a

β̂i

σ̂i
∼ Tn−2.

• Donc, si

∣∣∣∣∣ β̂i

σ̂i

∣∣∣∣∣ > tn−2(1 − α/2), on rejette H0 au niveau α.
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Exemple (Engrais et blé)

Dans notre exemple, on rejette l’hypothèse nulle pour chacune des coefficients.
Ceux-ci sont donc significativement non nuls au seuil de 5%.

lm_wheat <- lm(data=df_wheat,formula = Rendement~.)
summary(lm_wheat)
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3. La régression linéaire multiple



3.1 Contexte et exemple

La modélisation du rendement d’un champ effectuée précédemment est
simpliste : d’autres variables peuvent l’expliquer comme la qualité du sol, la
température moyenne, etc...

On va chercher à expliquer une variable Y en fonction de plusieurs variables
explicatives X1,X2, . . . ,Xp.
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Exemple (Champs de tomates)

On a cette fois-ci le rendement de n = 80 champs de tomates, supposés
indépendants, ainsi que de cinq autres variables explicatives non constantes.
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Exemple (Champs de tomates)

On représente ci-dessous les corrélations linéaires pouvant exister entre ces
variables.
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3.2 Modélisation
Notations :
• Y la variable à expliquer : observations y1, . . . , yn.
• p le nombre de variables explicatives X1, . . . ,Xp.
• Pour tout j ∈ {1, . . . , p}, les observations de Xj sont :

x1,j , x2,j , . . . , xn,j .

• On notera X la matrice de design

X =


x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p
...

...
...

xn,1 xn,2 . . . xn,p


supposée de rang p (aucune variable ne s’écrit linéairement en fonction des autres).
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Modèle linéaire multiple

• On suppose dans la suite que les observations y1, . . . , yn s’expliquent selon le modèle

yi = β1xi,1 + β2xi,2 + · · ·+ βpxi,p + εi =

p∑
j=1

βjxi,j + εi , 1 ⩽ i ⩽ n

où les βj dont des réels et les εi des variables aléatoires (bruits).
• On suppose toujours que les bruits (εi)1⩽i⩽n sont i.i.d. de loi N (0, σ2), où σ > 0.

Remarque

On a en fait 
y1

y2

...

yn

 =


x1,1 x1,2 . . . x1,p

x2,1 x2,2 . . . x2,p

...
...

...

xn,1 xn,2 . . . xn,p

 ·


β1

β2

...

βp

+


ε1

ε2

...

εn


ce qui s’écrit Y = X · β + ε, où ε ∼ NRn (0, σ2In).
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Remarque

• Dans la plupart des cas, l’équation de la régression contient une constante,
correspondant au cas où la variable X1 est constante et égale à 1 (xi,1 = 1 pour
tout i).
On a alors

yi = β1 + β2xi,2 + · · ·+ βpxi,p.

• La matrice de design s’écrit alors

X =


1 x1,2 . . . x1,p

1 x2,2 . . . x2,p
...

...
...

1 xn,2 . . . xn,p


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3.3 Moindres Carrés Ordinaires (MCO)

Définition
On appelle estimateur des moindres carrés ordinaires, noté β̂ ∈ Rp

β̂ = argmin
β∈Rp

n∑
i=1

yi −
p∑

j=1

βjxi,j

2

= argmin
β∈Rp

∥Y − Xβ∥2.
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Remarque : Déterminer

β̂ = argmin
β∈Rp

∥Y − Xβ∥2

revient à déterminer le projeté orthogonal de Y sur F = Vect(X1, . . . ,Xp), le sous
espace de dimension p de Rn engendré par les vecteurs colonnes de X .
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Propriété

L’estimateur des MCO a pour expression

β̂ =
(

X T X
)−1

X T Y .
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Exemple (Champs de tomates)

Dans notre exemple, où l’on cherche à expliquer le rendement (observations yi ) en
fonction des autres variables, on a :
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Loi des estimateurs des MCO

• On a

β̂ ∼ NRp

(
β, σ2

(
X T X

)−1
)
.

• En particulier, pour tout j ∈ {1, . . . , p}

β̂j ∼ N
(
βj , σ

2
(

X T X
)−1

jj

)
.

Remarque : L’estimateur β̂ est donc non biaisé.

Problème : La valeur de σ2 est inconnue.
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3.4 Résidus

Définition

• Le vecteur des valeurs ajustées du modèle est donné par

Ŷ = X · β̂ ∈ Rn

On a en fait Ŷ = (ŷ1, . . . , ŷn)
T où ŷi =

∑p
j=1 β̂jxi,j , 1 ⩽ i ⩽ n.

• Le vecteur des résidus est donné par

ε̂ = Y − Ŷ .

On a en fait ε̂ = (ε̂1, . . . , ε̂n)
T où ε̂i = yi − ŷi , 1 ⩽ i ⩽ n.
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Remarque :
Par définition, le projeté orthogonal de Y sur F = Vect(X1, . . . ,Xp) est donné par Ŷ = X β̂.

La constante ne fait pas partie du modèle (X1

n’est pas constante et égale à 1).
Les vecteurs Ŷ et ε̂ sont orthogonaux :

∥Y∥2 = ∥Ŷ∥2 + ∥ε̂∥2.

La constante fait partie du modèle
(X1 = (1, . . . , 1)T = 1).
Les vecteurs Ŷ − y1 et ε̂ sont orthogonaux :

∥Y − y1∥2 = ∥Ŷ − y1∥2 + ∥ε̂∥2.

Dans les deux cas, on note SCT = SCE + SCR.
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Définition

Le coefficient de détermination R2 est défini par

R2 = (Dispersion expliquée par le modèle)/(Dispersion totale) =
SCE
SCT

= 1 − SCR
SCT

.

• Si la constante ne fait pas partie du modèle :

R2 =
∥Ŷ∥2

∥Y∥2 = 1 − ∥ε̂∥2

∥Y 2∥ .

• Si la constante fait partie du modèle :

R2 =
∥Ŷ − y1∥2

∥Y − y1∥2 = 1 − ∥ε̂∥2

∥Y − y1∥2 .

Remarque : Il s’agit toujours d’un nombre réel compris entre 0 et 1, donnant la proportion de
variance expliquée par le modèle. Plus il est proche de 1, plus le modèle est adapté aux données.
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Exemple (Champs de tomates)

Le modèle linéaire explique environ 35% de la variance dans notre étude sur le
rendement des champs de tomates.
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Remarque :
Plus il y a de variables à expliquer la variable réponse, plus le R2 sera proche de 1.

Afin de tenir compte de la dimension de l’espace de projection, on peut considérer la
définition suivante.

Définition
Le coefficient de détermination ajusté, noté R2

a est défini par :

• R2
a = 1− n

n − p
× ∥ε̂∥2

∥Y∥2 = 1− n
n − p

(1− R2) si la constante ne fait pas partie du

modèle.

• R2
a = 1 − n − 1

n − p
× ∥ε̂∥2

∥Y − y1∥2 = 1 − n − 1
n − p

(1 − R2) si la constante fait partie du

modèle.
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Exemple (Champs de tomates)

Le coefficient de détermination ajusté est d’environ 0.306 dans notre modèle.
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3.5 Lois des estimateurs avec variance estimée
Propriétés

• La statistique σ̂2 =
1

n − p
∥ε̂∥2 =

1
n − p

∑n
i=1 ε̂

2
i est un estimateur non baisé de σ2.

• On a
(n − p)σ̂2

σ2 ∼ χ2
n−p.

• σ̂2 est indépendante de β̂.

Exemple (Champs de tomates)

Dans notre cas, on estime σ̂ ≈ 0.1016.
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Lois des estimateurs avec variance estimée
On rappelle que pour tout j ∈ {1, . . . , p}

β̂j ∼ N
(

0, σ2
(

X T X
)−1

jj

)
.

On note alors σ̂2
j = σ̂2 (X T X

)−1
jj , et on a

β̂j − βj

σ̂j
∼ Tn−p

où Tn−p désigne la loi de Student à n − p d.d.l.
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Remarque :
Ces propriétés permettent de construire des intervalles de confiance pour les βj et σ2.

Propriétés

• Pour tout j ∈ {1, . . . , p}, un intervalle de confiance pour βj au niveau 1− α est donné par

IC(βj) =
[
β̂j − σ̂j × tn−p(1 − α/2) ; β̂j + σ̂j × tn−p(1 − α/2)

]
où tn−p(1 − α/2) désigne le quantile d’ordre (1 − α/2) de la loi de Student Tn−p.

• Un intervalle de confiance pour σ2 au niveau 1 − α est donné par

IC(σ2) =

[
(n − p)σ̂2

cn−p(1 − α/2)
;
(n − p)σ̂2

cn−p(α/2)

]
où cn−p(α/2) et cn−p(1 − α/2) désignent respectivement les quantiles d’ordres α/2 et
(1 − α/2) de la loi χ2

n−p.
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Exemple (Champs de tomates)

On obtient ces intervalles de confiance pour les coefficients dans notre modèle avec
la fonction confint de R.

lm_tomato <- lm(data = df_tomato,formula = Rendement ~.)
confint(lm_tomato)

2.5 % 97.5 %
(Intercept) 1.5589695200 2.697747984
Engrais 0.0004302768 0.002333366
Irrigation 0.0001128166 0.016432983
Heures_Travail -0.0040902134 0.008470244
Qualite_Sol 0.0018185737 0.006537700
Temperature -0.0049447805 0.041023670
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3.6 Nouvelles prévisions

Supposons que l’on ait une nouvelle observation xn+1 = (xn+1,1, . . . , xn+1,p),
indépendante des observations x1, . . . , xn.

On prédit naturellement la valeur associée yn+1 de la variable réponse Y par

ŷn+1 =

p∑
j=1

β̂jxn+1,j = xn+1 · β̂.

Question : Comment mesure l’incertitude sur la prévision ŷn+1 ?
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Propriété

• On a
yn+1 − ŷn+1√

σ̂2
(

1 + xn+1
(
X T X

)−1 xT
n+1

) ∼ Tn−p.

• On en déduit un intervalle de confiance de niveau 1 − α pour yn+1

IC(yn+1 =

[
ŷn+1 ± tn−p(1 − α/2)

√
σ̂2
(

1 + xn+1
(
X T X

)−1 xT
n+1

)]

où tn−p(1 − α/2) désigne le quantile d’ordre (1 − α/2) de la loi Tn−p.
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Exemple (Champs de tomates)

• Supposons que l’on dispose des 3 champs différents suivants.

new_obs <- data.frame(Engrais = c(70,100,150),
Irrigation = c(35,40,45),
Heures_Travail = c(40,50,45),
Qualite_Sol = c(80,60,75),
Temperature = c(15,13,16))

Engrais Irrigation Heures_Travail Qualite_Sol Temperature
1 70 35 40 80 15
2 100 40 50 60 13
3 150 45 45 75 16

• On obtient les rendements estimés pour ces champs, avec leurs intervalles de confiance au niveau 95%

predict(lm_tomato,newdata = new_obs,interval = "prediction")

fit lwr upr
1 6.813248 6.302925 7.323571
2 6.737884 6.200317 7.275452
3 7.115340 6.604831 7.625849

3. La régression linéaire multiple 63



3.7 Nullité des coefficients

Question statistique d’intérêt : Les coefficients (βj)1⩽j⩽p sont-il significativement
non nuls?

En effet, même si on a β̂j ̸= 0 pour un certain j ∈ {1, . . . , p}, il se peut que la vraie
valeur vérifie βi = 0.

Remarques :
• Si βj = 0, cela signifie que la variable Xj n’explique pas (linéairement) la variable

Y .
• On peut tester si un ou plusieurs coefficients son simultanément nuls.
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Nullité d’un coefficient

Pour j ∈ {1, . . . , p}, on considère le test d’hypothèses :

H0 : βj = 0 contre H1 : βj ̸= 0.

Propriété

Sous l’hypothèse nulle H0, on a
β̂j

σ̂j
∼ Tn−p.

Donc, si

∣∣∣∣∣ β̂j

σ̂j

∣∣∣∣∣ > tn−p(1 − α/2), on rejette H0 au niveau α.

3. La régression linéaire multiple 65



Exemple (Champs de tomates)

• Dans notre exemple, on ne rejette pas, au seuil de 5%, l’hypothèse β6 = 0. En
l’occurrence, la température ne semble pas jouer de rôle significatif dans notre
modèle.

• En revanche, on rejette l’hypothèse β3 = 0. L’impact de l’irrigation est donc
siginificativement non nul, au seuil de 5%.
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Remarques :
• Dans l’exemple précédent, si on souhaite par exemple tester

H0 : β1 = β2 = β3 = 0 contre H1 : ∃j ∈ {1, 2, 3}, βj ̸= 0,

utiliser les statistiques de test précédentes n’est pas très pertinent...
• En effet, si on prend comme zone de rejet

R =
3⋃

j=1

{∣∣∣∣∣ β̂j

σ̂j

∣∣∣∣∣ > tn−p(1 − α/2)

}
,

le risque de 1ère espèce n’est pas nécessairement majoré par α (il est majoré par 3α).
• « Plus on cherche un coefficient significatif, plus on a de chances de trouver... »
• On peut appliquer un critère de correction (Bonferoni par exemple)...
• ... ou utiliser une zone de rejet beaucoup plus restrictive comme simplement

R′ =

{∣∣∣∣∣ β̂1

σ̂1

∣∣∣∣∣ > tn−p(1 − α/2)

}
,

mais la puissance du test est alors faible.
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Exemple (Champs de tomates)

Dans notre exemple, on peut tester

H0 : β1 = β2 = β3 = β5 = 0 contre H1 : ∃j ∈ {1, 2, 3, 5}, βj ̸= 0.

Si on additionne les p-values

1.42e−10 + 0.005001 + 0.0046994 + 0.000723 ⩽ 0.052718,

On ne garantit plus un risque de 1ère espèce inférieur à 5%.

« Plus on cherche, plus on a de chances de trouver... »
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Nullité simultanée de plusieurs coefficients

On veut tester la nullité simultanée des q = p − p0 derniers coefficients du modèle :

H0 : βp0+1 = · · · = βp = 0 contre H1 : ∃j ∈ {p0 + 1, . . . , p}, βj ̸= 0.

On note Ŷ0 le vecteur des valeurs ajustées du modèle en ne gardant que les p0 premières variables,
et ε̂0 le vecteur des résidus associés.

Propriété

Sous H0, on a

F =
n − p

q
× ∥Ŷ − Ŷ0∥2

∥Y − Ŷ∥2
=

n − p
q

× SCR0 − SCR
SCR

∼ Fq
n−p

où :
• SCR0 est la somme des carrés résiduels en ne prenant que les p0 premières variables ;
• Fq

n−p désigne la loi de Fisher à q et n − p d.d.l.

Donc, si F > f q
n−p(1 − α), le quantile d’ordre (1 − α) de la loi Fq

n−p, on rejette H0 au niveau α.
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Remarque :
L’idée du test est de considérer que si Ŷ0 est proche de Ŷ , alors il semble
raisonnable de conserver l’hypothèse nulle, car les q dernières variables n’apportent
pas grand chose.

3. La régression linéaire multiple 70



Exemple (Champs de tomates)

Dans R, on peut utiliser la fonction anova pour effectuer un tel test. On cherche ci-dessous à tester
simultanément la significativité des coefficients β4 et β5, associés aux variables Heures_Travail et
Qualite_Sol.

# Modèle complet
lm_complet <- lm(data = df_tomato,formula = Rendement ~.)
# Modèle réduit
lm_reduit <- lm (data=df_tomato,formula = Rendement ~ Engrais + Irrigation + Temperature)
# Test
anova(lm_complet,lm_reduit)

Model 1: Rendement ~ Engrais + Irrigation + Heures_Travail + Qualite_Sol +
Temperature

Model 2: Rendement ~ Engrais + Irrigation + Temperature
Res.Df RSS Df Sum of Sq F Pr(>F)

1 74 0.76409
2 76 0.89284 -2 -0.12875 6.2347 0.003145 **
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Ici, on rejette H0.
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Remarque : Ce test, appelé test entre modèles emboîtés, est en fait équivalent
au test de rapport de vraisemblance maximale.

Cas particulier : test de Fisher global

On peut vouloir tester si tous les coefficients sont nuls, exceptée la constante. Dans
ce cas, Ŷ0 = y1 et on a comme statistique de test

F =
n − p
p − 1

× ∥Ŷ − Ŷ0∥2

∥Y − Ŷ∥2
=

n − p
p − 1

× R2

1 − R2 ∼ Fp−1
n−p .

Remarque : S’il n’y a qu’une seule variable en dehors de la constante, ce test est
alors équivalent au test de Student vu pour la régression linéaire simple.
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Exemple (Champs de tomates)

Dans le cas du test de Fisher global, le résultat est immédiatement fourni par la
fonction summary de R.

Ici, on rejette au niveau 5% l’hypothèse comme quoi tous les coefficients seraient
nuls en dehors de la constante.
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