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Partie 1 : La régression linéaire



&3 Pré-requis
e Connaissances sur le logiciel R.
e Statistiques descriptives.
e Tests d’hypothéses et estimation.
e Un peu d’algebre linéaire...

& Bibiliographie
* R pour la statistique et la science des données, Frangois Husson et al., Presses
Universitaires de Rennes.

* Probabilités, Analyse des données et Statistique, Gilbert Saporta, Editions
Technip.

e e polycopié d’Arnaud Guyader.



https://perso.lpsm.paris/~aguyader/files/teaching/Regression.pdf

© Obijectifs
e Expliquer un lien possible entre différentes variables décrivant des phénomenes
physiques, biologiques, chimiques, etc...
e Prédire la valeur d’'une variable réponse en fonction de variables explicatives.

$.J Enseignement
e Partie 1 : Régression linaire (G. Franchi - 1 CM, 6 TDs).
¢ Partie 2 : Analyse de variance (ANOVA) (B.Mahieu - 1CM, 6 TDs).

& Modalités d’évaluation
e 1 évaluation écrite pour la partie 2 : Analyse de variance.
e 1 projet pour la partie 1 : Régression linéaire.



1. La corrélation linéaire



Exemple (Investissement publicitaire)

On a recensé les ventes d’un produit cosmétique ainsi que le budget publicitaire
accordé a ce produit sur une durée de 36 mois.

Mois Budget Pub (€) Budget Pub mois précédent (€) Ventes (€)

1 22 742 - 200 392
2 22133 22742 204 989
3 24 875 22133 208 374
4 27 493 24 875 212 876
5 23128 27 493 229 645
6 43 434 23128 216 858
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Exemple (Investissement publicitaire)

Ci-dessous, on a représenté ces valeurs sous forme de séries temporelles

Ventes et Budget publicitaire

300000
Qw200 000
% Type
_§ —*— Budget Publicitaire
c
o Ventes
=

100 000
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Exemple (Investissement publicitaire)

Question : Existe-t-il un lien entre le budget publicitaire et le montant des ventes
réalisées ?

* Le nuage de points présentant les ventes réalisées en fonction du budget
publicitaire ne montre pas de lien clair...

Ventes en fonction du budget publicitaire (méme mois)
320000

280 000

Ventes (€)

240000

200000

20000 40000 50000

0 000
Budget Publicitaire (€)

¢ Le coefficient de corrélation linéaire calculé pour ces deux variables est
d’ailleurs p ~ 0, 21.
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Définition
Soient X et Y deux variables, dont on posséde n observations xq,..., X, €t y1,..., ¥n.

Le coefficient de corrélation linéaire entre les variables X et Y est

ZI 1(Xl )(y/—}_/)
\/ZI 1 Xl \/Z/ 1 yl )

ou X et y désignent les moyennes des observations des variables X et Y.

Remarques

e p est toujours comprisentre-1et1:—1<p< 1.
* pmesure a quel point I'égalité Y = aX + b est vraie sur les observations :

o Sip=1,onaY =aX+baveca>0.
o Sip=-1,onaY=aX+baveca<0.
o Si p =0, les observations sont orthogonales (elles sont non corrélées).

o)
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Exemple (Investissement publicitaire)

¢ On représente maintenant les ventes réalisées chaque mois en fonction du
budget publicitaire du mois précédent

Ventes en fonction du budget publicitaire (mois précédent)
320000

280 000

Ventes (€)

240000

200000

20000 40000 50000

0 000
Budget Publicitaire (€)

¢ Le coefficient de corrélation linéaire calculé pour ces deux variables est
p~0,88.
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2 La corrélation p calculée entre X et Y est-elle significativement non nulle, ou cela
provient-il d’'un effet d’échantillonnage ?

&3 On se retrouve dans le cadre du test statistique :

Hy: Cor(X,Y)=0 contre H;: Cor(X,Y)#0.

Propriété

Si le vecteur aléatoire (X, Y) est gaussien, on a sous 'hypothése Hy

P ~Ths
ou 7,_» désigne la loi de Studenta n— 2 d.d.l.
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Remarque

On rejettera donc I'hypothése nulle, au niveau o > 0, si

& > tn_2(1 = a/2).

1— 22
n—2

1. La corrélation linéaire 1



Exemple (Investissement publicitaire)

On a les sorties R suivantes.
e Corrélation avec le budget publicitaire du méme mois :

cor.test (df$ Budget Pub () ,df$ Ventes ()°)

Pearson's product-moment correlation

data: df$ Budget Pub ()" and df$ Ventes ()~
t = 1.2587, df = 34, p-value = 0.2167
alternative hypothesis: true correlation is not equal to O
95 percent confidence interval:
-0.1262841 0.5045639
sample estimates:
cor
0.2110061

Ici, on ne rejette pas I'hypothése nulle : les ventes ne semblent pas corrélées au
budget publicitaire du méme mois (au seuil de 5%).

1. La corrélation linéaire 12



Exemple (Investissement publicitaire)

e Corrélation avec le budget publicitaire du mois précédent :
cor.test(df$ Budget Pub mois précédent () ,df$ Ventes ()7)

Pearson's product-moment correlation

data: df$ Budget Pub mois précédent ()° and df$ Ventes ()°
t = 10.829, df = 34, p-value = 1.46e-12
alternative hypothesis: true correlation is not equal to O
95 percent confidence interval:
0.7765776 0.9377500
sample estimates:
cor
0.8804748

Ici, on rejette I'hypothese nulle : les ventes sont significativement corrélées avec
le budget publicitaire du mois précédent (au seuil de 5%).

1. La corrélation linéaire 13



2. La régression linéaire simple



2.1 Contexte et exemple

© On souhaite dorénavant expliquer le lien linéaire pouvant exister entre deux
variables X et Y.

© On souhaite également prédire la valeur de la variable Y en fonction de la variable
X.

2. Larégression linéaire simple 15



Exemple (Engrais et blé)

e On s’intéresse au lien entre la quantité d’engrais utilisé dans un champ de blé
(en Kg/ha) et le rendement de ce champ (en T/ha).

* On a ainsi mesuré ces deux quantités dans 50 champs.

Rendement en blé en fonction de l'utilisation d'engrais

o

Rendement (Tha)

0 50 100

150 200
Engrais (Kg/ha)
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Exemple (Engrais et blé)

2.

¢ Une étude rapide de la corrélation montre un lien linéaire significatif (au seuil de

5%) entre ces deux quantités.

Pearson's product-moment correlation

data: df_wheat$Engrais and df_wheat$Rendement
t = 16.983, df = 48, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to O
95 percent confidence interval:
0.8724140 0.9574931
sample estimates:
cor
0.9259172

On cherche a expliquer davantage le lien linéaire entre le rendement d’'un
champ (valeurs y;) et la quantité d’engrais utilisé (valeurs x;).

La régression linéaire simple 17



2.2 Modélisation

Modeéle linéaire simple

e On suppose dans la suite que les observations y;, ..., y, s’expliqguent en
fonction des xy, ..., x, selon le modéle

Yi=PBo+B1Xi+ei, 1<i<n

ol (B, B1) € R? et les ¢; sont des variables aléatoires, appelées bruits.
¢ On suppose de plus que les bruits (¢;)1<i<n :

o sont indépendants;
o sont de méme loi A(0,0?) avec o > 0.

&2 Pour expliquer le lien entre les y; et les x;, il faut donc estimer les valeurs de
Bo, 51 eto.

Q Il s’agit du principe de la régression linéaire.
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2.3 Moindres Carrés Ordinaires (MCO)

Définition

On appelle estimateurs des moindres carrés ordinaires, notés Bo et By, les
valeurs de (p et 81 minimisant

> (i — Bo — Bixi)?
i=

n

(30751) = argmin > (yi — Bo — B1%)°.

(ﬁ03/81 )E]Rz i=1

2. Larégression linéaire simple 19



Rendement en blé en fonction de l'utilisation d'engrais
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Les estimateurs des MCO définissent la droite minimisant les écarts entre les observations et celle-ci.
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Propriéte

Les estimateurs des MCO ont pour expressions

5 = Ziali =D =)
i~ X

et Bo=y—Bix.

© Remarque :
La droite des MCO, donnée par I'équation

y= Bo + Bix,
passe toujours par le centre de gravité (x,y) du nuage de points ((Xi, ¥/))1<cn-

Rendement en blé en fonction de ['utilisation d'engrais

Rendement (T/ha)
"

2. Larégression linéaire simple 0 50 150 200 21
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En R, la régression linéaire par les moindres carrés se fait avec la fonction 1m.

Exemple (Engrais et ble)

Reprenons le cas du rendement d’'un champ de blé.

1m_wheat <- 1lm(data=df_wheat,formula = Rendement-~.)
summary (1lm_wheat)

Residuals:
Min 1Q Median 30 Max
-1.25014 -0.24539 0.00236 0.34201 0.83999

Coefficients:

Estimaté)Std. Error t value Pr(>|tl|)
(Intercept) 2.048246] 0.121292 16.89 <2e-16 #**
I ais 0.019442 0.001145 16.98 <2e-16 #*=*

Signif. codes: 0 #++ 0.001 #+ 0.01 + 0.05 . 0.1 1
Residual standard error: 0.463 on 48 degrees of freedom

Multiple R-squared: 0.8573, Adjusted R-squared: 0.8544
F-statistic: 288.4 on 1 and 48 DF, p-value: < 2.2e-16

Ici, on a By ~ 2.05 et 3; ~ 0.02.
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Lois des estimateurs des MCO

Ona )
A 2 N 2 _ g
P NBLA) ob =
et
B N(B 02) ou o2 =052 1+7—2
0 0,00 0 n 27:1()(1,_7)2 :

Q Remarque:
Les estimateurs /3y et 5 sont non biaisés.

Théoréme (Gauss-Markov)

Les estimateurs j, et 31 sont de variance minimale parmi les estimateurs sans biais linéaires
en (¥i)i<i<n-

&% Probléme :
La valeur de o2 est inconnue.
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2.4 Résidus

Définition
¢ Pour toute observation j € {1,...,n}, on note
Vi = Bo+ B1x
la valeur ajustée du modéle en x;.
e Les résidus de la régression sont définis pour tout i € {1,..., n} par

~

Ei=Yi—Vi
=Yi— <30 +B1Xi> .
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Remarque

Les résidus correspondent aux erreurs d’ajustement du modele.

2.

Rendement en blé en fonction de l'utilisation d'engrais

o

©
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7

Propriété

On a
n n

V=Y =>_i—9P+> 777
1

=1 i=1

-

=

ou encore
SCT = SCE + SCR.

Rendement en blé en fonction de lutilisation d'engrais Rendement en bié en fonction de futiisation d'engrais Rendement en bié en fonction de ['utiisation d'engrais

Rendemant (Trha)

Rendement (Tra)

Rendement (Tra)

150 20

100
Engrais (Kg/ha)
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Le coefficient de détermination R?> du modgle est défini par
SCE
2 _
A= SCT
1 SCR
SCT

= (Dispersion expliquée par le modéle)/(Dispersion totale).

Q Remarques :
e C’est un nombre réel compris entre 0 et 1, représentant la proportion de
variance expliquée par le modeéle.
¢ Ce coefficient permet de mesurer 'adéquation du modéle aux données.
Plus il est proche de 1, plus le modéle est adapté.
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Exemple (Engrais et blé)

Dans notre cas, on a R? ~ 0.8573 : |a proportion de variance expliquée par le modéle est de 85,73%.

1m_wheat <- lm(data=df_wheat,formula = Rendement-~.)

summary (1m_wheat)

Residuals:
Min 10Q Median 3Q Max
-1.25014 -0.24539 0.00236 0.34201 0.83999

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.048246 0.121292 16.89 <2e-16 ##**
Engrais 0.019442 0.001145 16.98 <Jde-16 *===*

Signif. codes: 0O ##+ 0.001 #+ 0.01 * 0.05 . 0.1 1
Residual standard error: 0.463 on 48 degrees of freedom

[Multiple R-squared: 0.8573,] Adjusted R-squared: 0.8544
F-statistic: 288.4 on 1 and 48 DF, p-value: < 2.2e-16

2. Larégression linéaire simple
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2.5 Lois des estimateurs avec variance estimée

Propriétés

* La statistique 5° = -5 "7 | &2 est un estimateur non biaisé de o°.
n—2)52 2
° Ona % ~ Xn—2-

* 52 est indépendante de 3 et f3;.

Exemple (Engrais et blge)

Dans notre cas, on estime 6 ~ 0.463.

Residuals:
Min 10 Median 30 Max
-1.25014 -0.24539 0.00236 0.34201 0.83999

Coefficients:
Estimate Std. Error t value Pr(>|tl)

(Intercept) 2.048246 0.121292 16.89 <2e-16 *+*

Engrais 0.019442  0.001145 16.98 <2e-16 =+

Signif. codes: O **x 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.463|on 48 degrees of freedom

Multiple R-squared: 0.8573, Adjusted R-squared: 0.8544
F-statistic: 288.4 on 1 and 48 DF, p-value: < 2.2e-16
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Lois des estimateurs avec variance estimée

* On note

A2 —2
.2 o 2 o1 X
ST (% — X (n ST (% — %)

les estimateurs de Var(B1) et Var(Bo).
®* Onapourie{0,1}:

ou 7,_» désigne la loi de Studenta n — 2 d.d.l.
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©Q Remarque :
Ces propriétés permettent de construire des intervalles de confiance pour Sy, 51 et 0.

® Pour i € {0, 1}, un intervalle de confiance pour 3; au niveau 1 — « est donné par
1C(8) = [Bi = 1 % tra(1 = a/2) ; Bi+8; % tr2(1 - 0/2)]

ou t,—2(1 — «/2) désigne le quantile d’ordre (1 — «/2) de la loi de Student 7,_».
* Un intervalle de confiance pour o2 au niveau 1 — a est donné par
_ 9\a2 _ 9\a2
IC(02 _ [ (n—2)6 ; (n—2)6 ]
Ch2(1 —a/2) " ch_2(a/2)

ou ¢,—2(/2) et c,—2(1 — «/2) désignent respectivement les quantiles d’ordres «/2 et
(1 —a/2)delaloi x2 ..
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Exemple (Engrais et blé)

® Dans notre exemple, on a /3’0 ~ 2.05 et 31 ~ 0.0194.

1m_wheat <- lm(data=df_wheat,formula = Rendement-~.)
1m_wheat$coefficients

(Intercept) Engrais
2.04824563 0.01944231

* Des intervalles de confiance de niveau 0.95 pour ces valeurs sont donnés par

IC(Bo) ~ [1.80 ; 2.29] et IC(B1)~ [0.017 ; 0.022].

confint (1m_wheat,level=0.95)

2.5 % 97.5 %
(Intercept) 1.80437222 2.2921190
Engrais 0.01714052 0.0217441
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2.6 Nouvelles prévisions

&2 Supposons que I'on ait une nouvelle observation x4 de la variable explicative X,
indépendante des observations xi, ..., x,.

Q On cherche naturellement & prédire la valeur associée y,, 1 de la variable Y par

V1 = Bo + B1Xns1.

&2 Question : Comment mesurer I'incertitude sur notre prévision ¥, ?
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i e 1\
On note toujours ici : X = 5> /"4 X;.
* Ona

Y1 — Yot
~ Tn_2

A 1 ni1—X)?
oo (e i)

* On en déduit un intervalle de confiance de niveau 1 — a pour y,. 1

Pt £ b 2(1—a/2)\/“2 1+1 +M)]

A= Sl (x —X)2

ou t,_»(1 — «/2) désigne le quantile d’'ordre (1 — «/2) de la loi 7,_2.
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Exemple (Engrais et blé)

e Supposons que dans 3 champs de blés différents, on ait utilisé 75 Kg, 130 Kg et 180 Kg
d’engrais par hectare.

e Ci-dessous, on présente les rendements estimés pour ces champs, avec leurs
intervalles de confiance au niveau 95%.

new_obs <- data.frame(Engrais = c(75,130,180))
predict (lm_wheat,newdata = new_obs,interval = "prediction")

fit lwr upr
1 3.506419 2.565659 4.447179
2 4.575746 3.630870 5.520621
3 5.547861 4.584710 6.511012
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2.7 Nullité des coefficients

&2 Une question statistique d’intérét :
Les parametres [y et 51 sont-ils significativement non nuls ?

& En effet, méme si on a comme estimations 5o # 0 et 31 # 0, il se peut que I'on ait
pour les vraies valeurs 5y = 0 ou 31 = 0.

Remarque : Si 81 = 0, cela signifie que la variable X n’explique en fait pas la
variable Y (du moins linéairement...).
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Q Pour i € {0,1}, on considére le test d’hypothéses :

Ho:8i=0 contre H;:p5;#0.

* Sous I'hypothése nulle Hy, on a

@ ~ Th-2
Oj
* Dong, si @ > th_2(1 — «/2), on rejette Hy au niveau «.
g
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Exemple (Engrais et blé)

Dans notre exemple, on rejette I'hypothése nulle pour chacune des coefficients.
Ceux-ci sont donc significativement non nuls au seuil de 5%.

2.

1m_wheat <- 1lm(data=df_wheat,formula = Rendement-~.)

summary (1m_wheat)

La régression linéaire simple

Residuals:
Min 1q Median 3Q Max
-1.25014 -0.24539 0.00236 0.34201 0.83999

Coefficients:

Estimate Std. Error |t value Pr(>|t])
(Intercept) 2.048246 0.121292| 16.89 <2e-16 ***
Engrais 0.019442 0.001145 16.98 <2e-16 **x
Signif. codes: O *** 0.001 *=* 0.01 * 0.056 . 0.1 1
Residual standard errcr: 0.463 on 48 degrees of freedom

Multiple R-squared: 0.8573, Adjusted R-squared: 0.8544
F-statistic: 288.4 on 1 and 48 DF, p-value: < 2.2e-16
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3. La régression linéaire multiple



3.1 Contexte et exemple

&2 La modélisation du rendement d’un champ effectuée précédemment est
simpliste : d’autres variables peuvent I'expliquer comme la qualité du sol, la
température moyenne, etc...

Q On va chercher a expliquer une variable Y en fonction de plusieurs variables
explicatives Xy, Xz, ..., Xp.

3. Larégression linéaire multiple
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Exemple (Champs de tomates)

On a cette fois-ci le rendement de n = 80 champs de tomates, supposés
indépendants, ainsi que de cinq autres variables explicatives non constantes.

Trhal X1 (Ka/ha) a) X3 (H/ha) x4 X5 (°C)

Rendement i:rllg‘;;'aﬁ Irr:Lgat1orL Heureﬂ 'I'rava:Ll Qualite_Sol 'I'emperalture
1 3.234626 113.79049 40.01729 52.15813 57.11378 15.23743
2 3.125442 105.39645  41.15584 43.85247 59.97801 16.21811
3 3.337675 176.17417  38.88802 47.21953 79.96061 13.66123
4 3.216521 096.41017 41.93313 54.72312 53.62696 15.66082
5 3.402045 157.58576  39.33854 652.74943 63.20948 14.47709
6 3.151549 119.30130 40.99535 43.89468 84.02362 15.68375
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Exemple (Champs de tomates)

On représente ci-dessous les corrélations linéaires pouvant exister entre ces
variables.

Rendement Engrais Irrigation Heures_Travail Qualite_Sol Temperature
E 5
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3.2 Modélisation
&2 Notations :

¢ Y |la variable a expliquer : observations y, ..., yn.
* ple nombre de variables explicatives Xi, ..., Xp.
® Pourtoutje {1,...,p}, les observations de X; sont :

X1/, X2,jy -+ Xnj-
e On notera X la matrice de design
X114 X122 ... Xq
’ ’ P X1 X2 X3 X4 X5
Engrais Irrigation Heures_Travail Qualite_Sol Temperature
X211 Xo2 ... Xop 113.79049  40.01729 52.15813  57.11378  15.23743
X = 105.39645  41.15584 43.85247  50.07801  16.21811
176.17417  38.88802 47.21963  79.96061  13.66123
06.41017  41.93313 54.72312  53.62606  15.66082
157.58676  39.33864 52.74943  63.20048  14.47709
119.30130  40.99535 43.89468  B84.02362  15.68375
Xn1 Xn2 ... Xnp

supposée de rang p (aucune variable ne s’écrit linéairement en fonction des autres).
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Modele linéaire multiple

® On suppose dans la suite que les observations y1, ..., ¥, s’expliquent selon le modéle
P
Yi=BiXi1+ BeXiz + -+ BpXip+ei =D Bxij+e, 1<i<n
j=1

ou les g; dont des réels et les ¢; des variables aléatoires (bruits).
® On suppose toujours que les bruits (£;)1<i<n sont i.i.d. de loi A/(0,52), ot & > 0.

Remarque

On a en fait
» X141 X2 ... Xip| |B €1
Yo X214 Xo2 ... Xop B2 €2
Yn Xni  Xn2 ... Xnp Bp €n

ce quis'écrit Y = X - B+ ¢, ol € ~ Ngn(0, 02 1y).
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Remarque

¢ Dans la plupart des cas, I'équation de la régression contient une constante,
correspondant au cas ou la variable Xj est constante et égale a 1 (x;y = 1 pour
tout ).

On a alors
Yi= B1+ BaXj2 + -+ BpXip-

e La matrice de design s’écrit alors

1 X12 .. Xip

1 Xoo ... Xo
X — k) 7p

1 Xn72 e Xn7p
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3.3 Moindres Carrés Ordinaires (MCO)

Définition
On appelle estimateur des moindres carrés ordinaires, noté 5 € RP

N
H
.
.
‘

2
— argmin Z (y, Zﬁ,x,,)

PERP i

= argmin ||Y — X3|?.
BeRp
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Q Remarque : Déterminer

B = argmin ||Y — X3|)?

BERP

revient a déterminer le projeté orthogonal de Y sur F = Vect(Xj, ..., Xp), le sous
espace de dimension p de R" engendré par les vecteurs colonnes de X.
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Lestimateur des MCO a pour expression

B= (XTX>_1 XTy.
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Exemple (Champs de tomates)

Dans notre exemple, ou I'on cherche a expliquer le rendement (observations y;) en

fonction des autres variables, on a :

3.

La régression linéaire multiple

Coefficients:

EstimateStd. Error

(Intercept) 2.1283588 | 0.2857600
Engrais 0.0013818 | 0.0004776
Irrigation 0.0082729 | 0.0040953
Heures_Travail 0.0021900 | 0.0031519
Qualite_Sol 0.0041781 | 0.0011842

emperature 0.0180394 / 0.0115351

Signif. codes: O ***x 0.001 ** 0.01

t value Pr(>|tl)

448 1.42e-10 ***
.894 0.005001 *=*
.020 0.046994 =
.695 0.489337
.528 0.000723 ***
.564 0.122114

=T R SR

* 0.06 . 0.1 1

Residual standard error: 0.1016 on 74 degrees of freedom
Multiple R-squared: 0.3499, Adjusted R-squared: 0.306

F-statistic: 7.965 on 5 and 74 DF,

p-value: 4.767e-06
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Loi des estimateurs des MCO

* Ona ]
B ~ Ngo (5,02 (XTX) )
¢ En particulier, pour tout j € {1,...,p}
. —1
Bi~ N (5,,(;2 (xTx), > .

Ji

Q Remarque : Lestimateur 3 est donc non biaisé.

&2 Probléme : La valeur de o2 est inconnue.
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3.4 Résidus

¢ Le vecteur des valeurs ajustées du modele est donné par

Y=X-BeR"
Onaenfait ¥ = (§1,...,9n)7 ol i =37 Bxij, 1<i<n.
e |e vecteur des résidus est donné par
e=Y-Y.
Onaenfaité = (&,....8)) oué =y — 9, 1<i<n
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©Q Remarque : R X
Par définition, le projeté orthogonal de Y sur F = Vect(Xi, ..., Xp) est donné par Y = Xp.

= 7

La constante ne fait pas partie du modéle (X; La constante fait partie du modéle

n’est pas constante et égale a 1). xXi=Q,..., 1)T =1).

Les vecteurs Y et £ sont orthogonaux : Les vecteurs Y — y1 et £ sont orthogonaux :
Y12 = (Y1 + 12l 1Y =YL = [|Y = y1|® + ||é]%.

Dans les deux cas, on note SCT = SCE + SCR.
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Le coefficient de détermination R? est défini par

R? = (Dispersion expliquée par le modéle)/(Dispersion totale) = SCE

® Sila constante ne fait pas partie du modele :

g IVIE _ o el
Y12 [l 'Y2[I°
e Sila constante fait partie du modele :
e P
Y -y 1Y -y

SCT ~

SCR

1= ser

© Remarque : Il s’agit toujours d’un nombre réel compris entre 0 et 1, donnant la proportion de
variance expliquée par le modeéle. Plus il est proche de 1, plus le modéle est adapté aux données.
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Exemple (Champs de tomates)

Le modeéle linéaire explique environ 35% de la variance dans notre étude sur le

rendement des champs de tomates.

Estimate Std. Error t wvalue Pr(>|tl)

Coefficients:

(Intercept) 2.1283588 0.
Engrais 0.0013818 0
Irrigation 0.0082729 0
Heures_Travail 0.0021900 0.
Qualite_Sol 0.0041781 0
Temperature 0.0180394 O

Signif. codes: 0 *** 0.001

2857600

.0004776
.0040953

0031519

.0011842
.0115351

*x 0.01 % 0.

7

[l =T

.448 1.42e-10
.894 0.005001
.020 0.046994
.695 0.489337
.528 0.000723
.564 0.122114

05 . 0.1 1

k¥
*%

k¥

Residual standard error: 0.1016 on 74 degrees of freedom

Eultiple R-squared: 0.3499] Adjusted R-squared:

F-statistic: 7.965 on 5 and 74 DF,

3. Larégression linéaire multiple

0.306

p-value: 4.767e-06
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22 Remarque :
Plus il y a de variables & expliquer la variable réponse, plus le R? sera proche de 1.

Afin de tenir compte de la dimension de I'espace de projection, on peut considérer la
définition suivante.

Définition

Le coefficient de détermination ajusté, noté R2 est défini par :
n_ e _ n

e R2 =1 — X =17 = 1 — R?) si la constante ne fait pas partie du
i n—p |Y|? n—p' ) PasP
modele.
_ 2|12 _
* R2—1 - n-1 ”8[ s =1- n-1 (1 — R?) si la constante fait partie du
n—p [[Y-y1 n—p

modele.

3. Larégression linéaire multiple
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Exemple (Champs de tomates)

Le coefficient de détermination ajusté est d’environ 0.306 dans notre modéle.

3.

Estimate Std. Error t wvalue Pr(>|tl)

Coefficients:

(Intercept) 2.1283588 0.
Engrais 0.0013818 0
Irrigation 0.0082729 0
Heures_Travail 0.0021900 0.
Qualite_Sol 0.0041781 0
Temperature 0.0180394 O

Signif. codes: 0 *** 0.001

2857600

.0004776
.0040953

0031519

.0011842
.0115351

*x 0.01 % 0.

7

.448 1.42e-10
2.894 0.005001
2.020 0.046994
[0}
3
1

695 0.489337

.528 0.000723
.564 0.122114

05 . 0.1 1

ok
*%

k¥

Residual standard error: 0.1016 on 74 degrees of freedom

Multiple R-squared: 0.3499,E£ﬁusted R-squared:

0.3086

F-statistic: 7.965 on 5 and 74 DF,

La régression linéaire multiple

p-value: 4.767e-06
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3.5 Lois des estimateurs avec variance estimée

Propriétés

Exemple (Champs de tomates)

* |a statistique 6% = LIIéII2 =
n—p

A2

e Ona {1=P)%

* 42 est indépendante de j.

~ Xn—p-

]
n—p

S, €% est un estimateur non baisé de o°.

Dans notre cas, on estime  ~ 0.1016.

3.

La régression linéaire multiple

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) ~ 2.1283588 0.2857600 7.448 1.42e-10 %kx
Engrais 0.0013818 0.0004776  2.894 0.005001 **
Irrigation 0.0082720 0.0040953  2.020 0.046994 *
Heures_Travail 0.0021900 0.0031519  0.695 0.489337
Qualite_Sol  0.0041781 0.0011842  3.528 0.000723 %k
Temperature  0.0180394 0.0115351 1.564 0.122114

Signif. codes: O #+x 0.001 #* 0.01 * 0.05 . 0.1 1

Residual standard error: 0.1016] on 74 degrees of freedom
Multiple R-squared: 0.3499, Adjusted R-squared: 0.306
F-statistic: 7.965 on 5 and 74 DF, p-value: 4.767e-06



Lois des estimateurs avec variance estimée
On rappelle que pour toutj € {1,...,p}

Bi~ N (o, o2 (xTx),q) .

i

24 -1
On note alors 67 = 3% (X7X), ", etona

@—@NT
~ n—p
g

ou Tn—p désigne la loi de Studenta n— p d.d.l.
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©Q Remarque :
Ces propriétés permettent de construire des intervalles de confiance pour les 3; et 0.

Propriétés

* Pourtoutj e {1,...,p}, unintervalle de confiance pour j; au niveau 1 — « est donné par
IC(8) = B = 5 % tn-p(1 = @/2) ; B+ x tap(1 — /2)|

ou fp_p(1 — a/2) désigne le quantile d’ordre (1 — «/2) de la loi de Student 7,_p.

* Un intervalle de confiance pour ¢2 au niveau 1 — a est donné par

_[ (n-p#*  (n-p)*
IC(0®) = [cn_p(1 —a/2)’ Cn—p(a/2)}

ou cp—p(a/2) et ch—p(1 — a/2) désignent respectivement les quantiles d’ordres «/2 et
(1 — «/2) de laloi x5_,.
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Exemple (Champs de tomates)

On obtient ces intervalles de confiance pour les coefficients dans notre modéle avec
la fonction confint de R.

1m_tomato <- lm(data = df_tomato,formula = Rendement ~.)
confint (1m_tomato)

2.5 % 97.5 %

(Intercept) 1.5589695200 2.697747984
Engrais 0.0004302768 0.002333366
Irrigation 0.0001128166 0.016432983
Heures_Travail -0.0040902134 0.008470244
Qualite_Sol 0.0018185737 0.006537700
=0,

Temperature 0049447805 0.041023670
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3.6 Nouvelles prévisions

Q2 Supposons que I'on ait une nouvelle observation Xnp1 = (Xnt1,15 - > Xnt1,p)5
indépendante des observations xi,. .., Xp.

Q On prédit naturellement la valeur associée y,,1 de la variable réponse Y par

p
Vnp1 = Zﬁjxn-m,j = Xpy1 - B.
J=1

&2 Question : Comment mesure l'incertitude sur la prévision §,,., 1 ?
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* Ona

Ynet — Vit T,
o7 Tx) 1T
\/a (14 xns1 (X7X) 7' xT,,)

¢ On en déduit un intervalle de confiance de niveau 1 — a pour . 1

IC(Yni1 =

Pt & top(1 - a/2)\/62 (1431 (X7) Xr.7r+1)]

ou fh—p(1 — a/2) désigne le quantile d’ordre (1 — a,/2) de la 0i Tp—p.
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Exemple (Champs de tomates)

® Supposons que I'on dispose des 3 champs différents suivants.

new_obs <- data.frame(Engrais = c(70,100,150),
Irrigation = c(35,40,45),
Heures_Travail = c(40,50,45),
Qualite_Sol = c(80,60,75),
Temperature = c(15,13,16))

Engrais Irrigation Heures_Travail Qualite_Sol Temperature

1 70 35 40 80 15
2 100 40 50 60 13
3 150 45 45 75 16

® On obtient les rendements estimés pour ces champs, avec leurs intervalles de confiance au niveau 95%

predict(1lm_tomato,newdata = new_obs,interval = "prediction")

fit lwr upr
1 6.813248 6.302925 7.323571
2 6.737884 6.200317 7.275452
3 7.115340 6.604831 7.625849

3. Larégression linéaire multiple 63



3.7 Nullité des coefficients

= Question statistique d'intérét : Les coefficients (5;)1<j<p sont-il significativement
non nuls ?

Q3 En effet, méme sion a /3’,- # 0 pour un certainj € {1,...,p}, il se peut que la vraie
valeur vérifie 8; = 0.
Remarques :
* Si B; = 0, cela signifie que la variable X; n'explique pas (linéairement) la variable
Y.

¢ On peut tester si un ou plusieurs coefficients son simultanément nuls.
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Nullité d’un coefficient

Q Pourj € {1,...,p}, on considére le test d’hypothéses :

Ho : 3; =0 contre H; : 3; # 0.

Sous 'hypothése nulle Hy, on a

B
5; Tn—p:
Donc, si @ > th—p(1 — a/2), on rejette Hy au niveau a.
gj
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Exemple (Champs de tomates)

3

¢ Dans notre exemple, on ne rejette pas, au seuil de 5%, I'’hypothese g = 0. En
'occurrence, la température ne semble pas jouer de réle significatif dans notre

modele.

e En revanche, on rejette I'hypothése 53 = 0. Limpact de l'irrigation est donc

siginificativement non nul, au seuil de 5%.

La régression linéaire multiple

Estimate Std. Error t value/Pr(>ltl)
2857600 7.448)1.42e-10

Coefficients:

(Intercept) 2.1283688 0.
Engrais 0.0013818 0.
Irrigation 0.0082729 0.
Heures_Travail 0.0021900 0.
Qualite_Sol 0.0041781 0.
Temperature 0.0180394 O.

Signif. codes: 0 **+ 0.001

0004776 2.
0040953 2.
0031619 0.
0011842 3.
0115351 1k

*x 0,01 * 0.

894 0.005001
020] 0.046994
695) 0.4809337
528| 0.000723
56410.122114

05 . 0.1 1

Residual standard error: 0.1016 on 74 degrees of freedom

Multiple R-squared: 0.3499, Adjusted R-squared:
F-statistic: 7.965 on 5 and 74 DF,

0.306
p-value: 4.767e-06
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&3 Remarques :
¢ Dans I'exemple précédent, si on souhaite par exemple tester
Ho:B1=p2=pP3=0 contre H;:3jec{1,2,3}, 5 #0,
utiliser les statistiques de test précédentes n’est pas trés pertinent...

En effet, si on prend comme zone de rejet
R = U {

le risque de 1°® espéce n’est pas nécessairement majoré par « (il est majoré par 3a).

> th—p(1 —a/2)}

« Plus on cherche un coefficient significatif, plus on a de chances de trouver... »

On peut appliquer un critére de correction (Bonferoni par exemple)...
e ... ou utiliser une zone de rejet beaucoup plus restrictive comme simplement

R0
b1

mais la puissance du test est alors faible.

> thp(1 — a/2)} ,



Exemple (Champs de tomates)

Dans notre exemple, on peut tester

H0:ﬂ1 :ﬂ2:ﬂ3=,@5:0 contre H1 23j€{1,2,3,5}, ,81750

Si on additionne les p-values

1.42¢7'° + 0.005001 + 0.0046994 + 0.000723 < 0.052718,

On ne garantit plus un risque de 1% espéce inférieur & 5%.

Coefficients:

Estimate Std. Error t value/Pr(>Itl)
(Intercept) 2.12836588 0.2857600 7.448|1.42e-10 ***
Engrais 0.0013818 0.0004776  2.894|0.005001 *x
Irrigation 0.0082729 0.0040953  2.020(0.046994 *
Heures_Travail 0.0021900 0.0031619 0.695|0.489337
Qualite_Sol 0.0041781 0.0011842  3.528|0.000723 *x*
Temperature  0.0180384 0.0115351 1.56410.122114

Signif. codes: 0 =x* 0.001 ** 0.01 = 0.05 . 0.1

Residual standard error: 0.1016 on 74 degrees of freedom
Multiple R-squared: 0.3499, Adjusted R-squared: 0.306
F-statistic: 7.965 on 5 and 74 DF, p-value: 4.767e-06

« Plus on cherche, plus on a de chances de trouver... »

3. Larégression linéaire multiple
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Nullité simultanée de plusieurs coefficients
@ On veut tester la nullité simultanée des g = p — pp derniers coefficients du modéle :
Ho:Bpy+1=--=B,=0 contre Hy:3je{po+1,....p}, B #0.

2 On note ¥, le vecteur des valeurs ajustées du modéle en ne gardant que les p premiéres variables,
et &y le vecteur des résidus associés.

Propriété

Sous Hy, on a
v Vo2
I__:n—px||Y—\:o|| :n—pXSCFt’o—SCH
g Y- g SCR

~) ]-'g_p

ou :
® SCR, est la somme des carrés résiduels en ne prenant que les py premieres variables ;
* F, ,désigne la loi de Fishera get n— pd.d.l.

Donc, si F > f,?_p(1 — a), le quantile d’ordre (1 — «) de la loi F_,, on rejette Hy au niveau a.

n—ps
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3.

22 Remarque : i A
Lidée du test est de considérer que si Y est proche de Y, alors il semble

raisonnable de conserver I'hypothése nulle, car les g derniéres variables n’apportent

pas grand chose.

La régression linéaire multiple
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Exemple (Champs de tomates)

Dans R, on peut utiliser la fonction anova pour effectuer un tel test. On cherche ci-dessous a tester
simultanément la significativité des coefficients 34 et 85, associés aux variables Heures_Travail et
Qualite_Sol.

# Modéle complet

Im_complet <- Im(data = df_tomato,formula = Rendement ~.)

# Modéle réduit

Im_reduit <- 1lm (data=df_tomato,formula = Rendement ~ Engrais + Irrigation + Temperature)
# Test

anova(lm_complet,lm_reduit)

Model 1: Rendement ~ Engrais + Irrigation + Heures_Travail + Qualite_Sol +

Temperature
Model 2: Rendement ~ Engrais + Irrigation + Temperature
Res.Df RSS Df Sum of Sq F  Pr(>F)
1 74 0.76409
2 76 0.89284 -2 -0.12875 6.2347 0.003145 *x

Signif. codes: O *¥x 0.001 ** 0.01 * 0.05 . 0.1 1

Ici, on rejette Hp.
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&2 Remarque : Ce test, appelé test entre modéles emboités, est en fait équivalent
au test de rapport de vraisemblance maximale.

Cas particulier : test de Fisher global

On peut vouloir tester si tous les coefficients sont nuls, exceptée la constante. Dans
ce cas, Yy = y1 et on a comme statistique de test

n-p |Y-Y|® n-p_ R 1
F: = = Y .
=1 y_yg p—1 T-m e

£ Remarque : S'il n’y a qu’une seule variable en dehors de la constante, ce test est
alors équivalent au test de Student vu pour la régression linéaire simple.
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Exemple (Champs de tomates)

Dans le cas du test de Fisher global, le résultat est immédiatement fourni par la

fonction summary de R.

Ici, on rejette au niveau 5% I'’hypothése comme quoi tous les coefficients seraient

Coefficients:

Estimate Std. Error t value Pr(>|t]|)

(Intercept) 2.1283588
Engrais 0.0013818
Irrigation 0.0082729
Heures_Travail 0.0021900
Qualite_Sol 0.0041781

0

Temperature .0180394

0

Signif. codes: 0 *#x 0.001

© o0 oo

2857600
.0004776

0040953
0031519

.0011842
.0115351

7.

2
2
0.
3
1.

** 0.01 * 0.

448 1.42e-10

.894 0.005001
.020 0.046994

695 0.489337

.528 0.000723

564 0.122114

05 . 0.1 1

Residual standard error: 0.1016 on 74 degrees of freedom

Multiple R-squared: 0.3499, Adjusted R-squared:

0.306

|F—statistic: 7.965 on 5 and 74 DF, p-value: 4.767e-06

nuls en dehors de la constante.

3.

La régression linéaire multiple
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