

EC 763 : Mathématiques pour l'ingénieur 2

Guillaume Franchi

Cursus Ingénieur 2ème année

Chapitre 3: Inversion de matrices

 \mathbb{Q} Tout nombre réel non nul x possède un **inverse** $x^{-1} = \frac{1}{x}$:

$$x \times \frac{1}{x} = \frac{1}{x} \times x = 1.$$

On cherche à étendre cette notion d'inverse aux matrices.

Le cas d'une matrice 2×2

• Soit $A = \begin{pmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{pmatrix}$ une matrice 2 × 2. Le **déterminant** de A est le nombre réel

$$det(A) = \begin{vmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{vmatrix} = a_{1,1} \times a_{2,2} - a_{2,1} \times a_{1,2}.$$

Calculer le déterminant de

$$A = \begin{pmatrix} -3 & 1 \\ 3 & -1 \end{pmatrix}.$$

Le cas d'une matrice 3×3

• Soit
$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{pmatrix}$$
 une matrice 3×3 . Le **déterminant** de A est le nombre réel

$$det(A) = \begin{vmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{vmatrix} = a_{1,1} \times \begin{vmatrix} a_{2,2} & a_{2,3} \\ a_{3,2} & a_{3,3} \end{vmatrix} - a_{1,2} \times \begin{vmatrix} a_{2,1} & a_{2,3} \\ a_{3,1} & a_{3,3} \end{vmatrix} + a_{1,3} \times \begin{vmatrix} a_{2,1} & a_{2,2} \\ a_{3,1} & a_{3,2} \end{vmatrix}.$$

Calculer le déterminant de

$$A = \begin{pmatrix} 1 & -3 & 2 \\ 2 & 1 & -4 \\ 1 & 1 & 1 \end{pmatrix}.$$

Définition

Soit $A = (a_{i,j})_{1 \le i,j \le n}$ une matrice carrée de dimension $n \times n$.

- On note, pour $i, j \in \{1, ..., n\}$, $A_{-(i,j)}$ la matrice extraite de A en supprimant la $i^{\text{ème}}$ ligne et la $j^{\text{ème}}$ colonne.
- On définit le **déterminant** de A par récurrence :

$$det(A) = \sum_{j=1}^{n} (-1)^{1+j} a_{1,j} det (A_{-(1,j)}).$$

Propriété

Une matrice carrée est de déterminant nul <u>ssi</u> l'une de ses lignes (ou l'une de ses colonnes) s'écrit comme une combinaison linéaire des autres lignes (resp. des autres colonnes).

Exemple

Sans calcul, déterminer le déterminant de la matrice

$$A = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & 2 & 3 \\ 1 & 1 & 1 & 1 \end{pmatrix}.$$

Propriétés

Soit *A* une matrice carrée de dimension $n \times n$.

- Si on échange deux lignes *(ou deux colonnes)* de *A*, le déterminant change de signe.
- Si on ajoute à une ligne (ou à une colonne) une combinaison linéaire des autres lignes (resp. des autres colonnes), le déterminant est inchangé.

Calculer le déterminant suivant :

$$\Delta = \begin{vmatrix} 3 & 16 & 24 & 33 \\ 1 & 5 & 7 & 9 \\ 5 & 27 & 36 & 55 \\ 7 & 38 & 51 & 78 \end{vmatrix}$$

Définition

Soit $A = (a_{i,j})_{1 \le i,j \le n}$ une matrice carrée de dimension $n \times n$.

On appelle **cofacteur** (i, j) de la matrice A le nombre réel

$$\delta_{i,j} = (-1)^{i+j} det \left(A_{-(i,j)} \right).$$

Propriété

Le déterminant de A est égal à

•
$$det(A) = \sum_{j=1}^{n} a_{i,j} \delta_{i,j}$$
 (développement selon la ligne i)

• $det(A) = \sum_{i=1}^{n} a_{i,j} \delta_{i,j}$ (développement selon la colonne j)

Calculer le déterminant de la matrice

$$A = \begin{pmatrix} 4 & 1 & 3 & 2 \\ 0 & 0 & -1 & 0 \\ 2 & 0 & 4 & 3 \\ -5 & 0 & 3 & 2 \end{pmatrix}.$$

Propriété

Soient A et B deux matrices carrées de dimension $n \times n$. On a

- $det(A \cdot B) = det(A) \times det(B)$;
- $det(A^T) = det(A)$.

Définition

 Une matrice carrée A de dimension n x n est dite inversible s'il existe une matrice B de même dimension telle que

$$A \cdot B = B \cdot A = I_n$$
.

• On note alors $B = A^{-1}$ l'**inverse** de la matrice A

Propriété

Soit A une matrice carrée.

- A est inversible $\underline{ssi} \det(A) \neq 0$.
- Dans ce cas, on a $det(A^{-1}) = \frac{1}{det(A)}$.
- De plus, on a l'expression

$$A^{-1} = \frac{1}{det(A)} \Delta^T,$$

où $\Delta = (\delta_{i,i})_{1 \le i,i \le n}$ est la matrice des cofacteurs.

Calculer l'inverse de la matrice

$$M = \begin{pmatrix} 1 & 0 & 1 \\ 2 & -2 & 2 \\ -1 & 0 & 3 \end{pmatrix}.$$

La propriété précédente fournit une formule explicite du déterminant, mais n'est pas toujours facile à appliquer...

On préférera parfois utiliser la méthode suivante.

Méthode

Considérons une matrice inversible $A = (a_{i,j})_{1 \le i,j \le n}$ de dimension $n \times n$.

Pour deux vecteurs $X=(x_1,\ldots,x_n)^T$ et $Y=(y_1,\ldots,y_n)^T$ dans \mathbb{R}^n , la solution du système

$$A \cdot X = Y \iff \left\{ \begin{array}{l} a_{1,1}x_1 + \cdots + a_{1,n}x_n = y_1 \\ \dots \\ a_{n,1}x_1 + \cdots + a_{n,n}x_n = y_n \end{array} \right.$$

est donnée par

$$X=A^{-1}Y.$$

 A^{-1} est donc la matrice du système obtenu en résolvant le système en les composantes x_i de X.

Déterminer l'inverse de la matrice

$$A = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}.$$