

ECFG932 : Techniques avancées en analyse sensorielle

Guillaume Franchi

Cursus Ingénieur 3^{ème} année

JAR: Just About Right

‡□ Pré-requis

- Test de Student.
- Analyse en Composantes Principales (ACP).
- Analyse Factorielle des Correspondances (AFC)

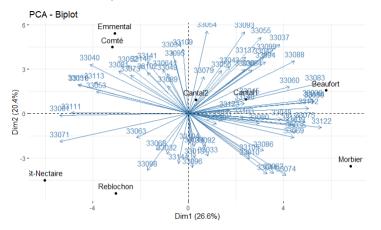
Enseignement

- Cours : \approx 45min.
- Travaux pratiques : ≈ 3h00.

Exemple

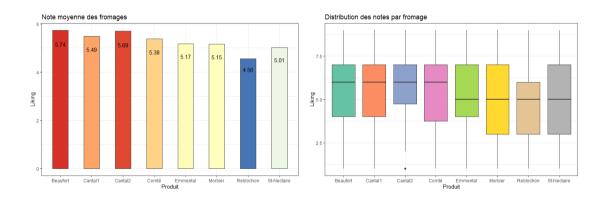
•	On a fait goûter 8 fromages à pâte pressée à un panel de 72 consommateurs :									
		. , .	` ' '	Emmenta Morbier (` , .	Reblochon (R);St-Nectaire (S).				
•	Les consommateurs ont noté ces fromages par : o une note hédonique d'appréciation globale (échelle de 1 à 9); o une évaluation de 9 attributs sensoriels, selon une échelle JAR en 5 points :									
	 Couleur; Consistance toucher; Intensité goût; Goût fruité; Intensité odeur; Goût salé; Fermeté texture; Crémeux texture; Intensité arrière-goût. 									
	Exemple :									
		Vraiment pas assez salé	Pas assez salé	Juste bien	Trop salé	Vraiment trop salé				
	Goût salé									

Exemple (suite)

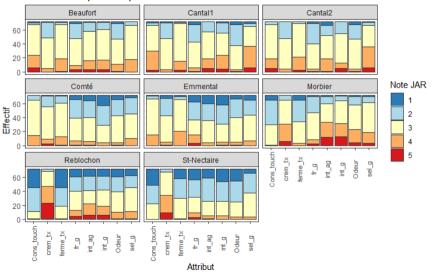

Conso	Produit	Liking	Couleur	Cons	Odeur	Int_g	Fr_g	Sel_g	Ferm	Crem	Int_ag
33001	Comté	3	2	4	2	2	2	3	2	2	2
33001	Morbier	4	2	2	2	4	2	4	2	4	4
33001	Beaufort	2	4	5	1	1	1	3	5	2	1
33001	Reblochon	3	3	1	3	2	2	3	2	3	2
33001	Cantal1	4	2	4	2	2	2	5	4	2	2
33001	Emmental	1	3	4	1	2	2	3	4	2	2
33001	Cantal2	7	2	4	1	3	3	4	3	3	3
33001	St-Nectaire	5	3	2	1	2	2	3	3	3	2
33010	Morbier	5	3	2	3	4	2	3	3	3	4

<u>Source</u>: Thèse CIFRE Oniris d'Alexiane Luc, 2022, *Evaluation de la perception des consommateurs à l'aide du protocole sensoriel Free JAR*: une nouvelle méthodologie de collecte d'analyse statistique des données.

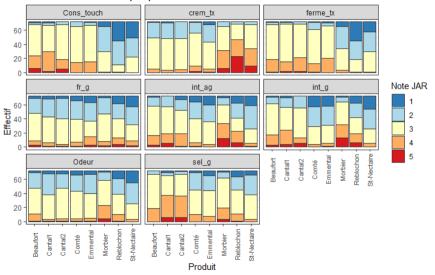
Objectifs:


- Déterminer les liens entre les notes d'appréciation globale et les évaluations sensorielles JAR.
- dentifier les défauts d'un produit.
- Déterminer les relations entre les attributs JAR.
- Situer un produit par rapport aux autres.

Ш Cartographie interne des préférences


- O Les goûts des consommateurs sont très hétérogènes.
- Q Les produit « Comté » et « Emmental » d'une part, et « Morbier » d'autre part, sont des produits segmentants.

Ш Représentations graphiques (1/3)


Ш Représentations graphiques (2/3)

Résumé des produits par attribut

Ш Représentations graphiques (3/3)

Résumé des attributs par produit

2. Analyses sur échelles JAR discontinues

Echelles JAR

- L'échelle JAR la plus utilisée pour noter un attribut du produit est une échelle de réponse discontinue structurée.
- Il est demandé à chaque individu de cocher la case correspondant le mieux à son avis sur l'attribut considéré.
- La valeur idéale est placée au centre de l'échelle, qui comporte en général 3,5,7 ou 9 points.

Echelle en 9 points	Vraiment pas assez salé			Juste bien			Vraiment trop salé
(partiellement labellisée)							
Echelle en 5		Vraiment oas assez salé	Pas assez salé	Juste bien	Trop salé	Vraiment trop salé	
points							

Remarques

- L'évaluation sensorielle des attributs du produit s'accompagne d'une note hédonique d'appréciation globale du produit. (*liking*).
- En général, chaque individu évalue plusieurs produits.
- La taille d'échantillon préconisée est d'au moins 75 consommateurs (Source : SFAS, 2022).

Périmètre d'analyse

- L'objectif principal est de mesurer l'impact d'un attribut sur l'appréciation générale.
- Deux solutions :
 - Conduire les analyses par produit.
 - Conduire les analyses tous produits confondus.

Remarque

- Les méthodes d'analyse sont identiques dans les deux cas, seules les interprétations diffèrent.
- Dans l'exemple qui suit, on ne fait que l'analyse du produit « Beaufort ».

Pré-traitement: Les différents items de l'échelle sont regroupés en 3 catégories : « Pas assez », « JAR » ou « Trop ».

On calcule alors la fréquence de chacun de ces groupes :

• « Pas assez » salé : 0.0694

« JAR » salé : 0.681

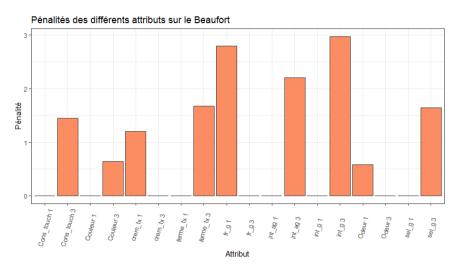
• « Trop » salé : 0.25

🌣 Pénalité (Mean drop) :

- On calcule ensuite les moyennes des appréciations globales pour chaque groupe ainsi défini.
 - o « Pas assez » salé: 3.20
 - « JAR » salé : 6.37 « Trop » salé : 4.72
- Les deux effets sur la movenne d'un attribut sont alors
 - o « Pas assez » salé : Moyenne « JAR » salé Moyenne « Pas assez » salé

$$6.37 - 3.20 = 3.17$$
.

« Trop » salé : Moyenne « JAR » salé – Moyenne « Trop » salé


$$6.37 - 4.72 = 1.65$$
.

Remarques

- Les catégories dattribut JAR avec un pourcentage de consommateurs dans les catégories « Pas assez » ou « Trop » inférieur à 20% ne doivent pas être considérées (même si les logiciels les présentent).
- Il n'est pas souhaitable de conserver une catégorie avec moins de 15 sujets en absolu, même si le critère de 20% est respecté.

Source : SFAS, 2022

때 Représentation graphique :

💠 Significativité statistique :

Les effets sur la moyenne peuvent être statistiquement testés en effectuant un **test** de **Student**.

Exemple

Comparons la moyenne d'appréciation globale des consommateurs ayant trouvé le Beaufort « Trop salé » par rapport à la moyenne donnée par ceux l'ayant trouvé « JAR » salé.

Exemple (suite)

On note:

- m₃ et m₂ les moyennes théoriques des deux groupes;
- $n_3 = 18$ et $n_2 = 49$ les effectifs des deux groupes;
- $\overline{x}_3 = 4.72$ et $\overline{x}_2 = 6.37$ les moyennes des deux groupes;
- $S_3^2 = \frac{1}{n_3} \sum_{i=1}^{n_3} (x_i^{(3)} \overline{x}_3)^2$ et $S_2^2 = \frac{1}{n_2} \sum_{i=1}^{n_2} (x_i^{(2)} \overline{x}_2)^2$ les variances empiriques des deux groupes.

On teste H_0 : $m_3 = m_2$ contre H_1 : $m_3 < m_2$. Sous les hypothèses adéquates, on a

$$T = \frac{\sqrt{n_2 + n_3 - 2} \left(\overline{x}_3 - \overline{x}_2\right)}{\left(n_3 S_3^2 + n_2 S_2^2\right) \left(1/n_3 + 1/n_2\right)} \sim \mathcal{T}_{n_3 + n_2 - 2}.$$

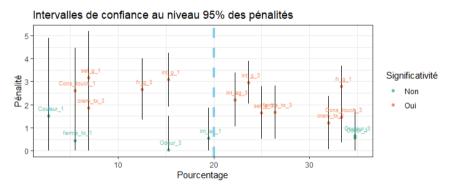
On rejette H_0 au seuil de 5% si $T < q_{0.05}$, le quantile d'ordre 0.05 de la loi $T_{n_3+n_2-2}$.

Exemple (suite)

Ici, on obtient $T \approx -2.87$ et $q_{0.05} \approx -1.67$ le quantile d'ordre 0.05 de la loi \mathcal{T}_{65} .

On rejette donc H_0 .

Par ailleurs, la *p*-value calculée ici vaut $p \approx 2.75 \times 10^{-3}$.


Remarque

La loi de Student permet également de construire des intervalles de confiance pour la pénalité théorique m_2-m_3 .

• Sur l'exemple du beaufort, et sur les catégories pertinentes, on obtient les résultats suivants.

Attribut	Effectif	Fréquence	Moyenne	Pénalité	<i>p</i> -value	Significativité à 5%
Cons_touch_3	24	33.33	4.92	1.45	5.06×10^{-3}	Oui
Couleur_3	25	34.72	5.36	0.64	0.13	Non
Odeur_1	25	34.72	5.36	0.58	0.17	Non
crem_tx_1	23	31.94	5.04	1.21	2.00×10^{-2}	Oui
ferme_tx_3	19	26.39	4.53	1.68	2.60×10^{-3}	Oui
fr <u>g</u> 1	24	33.33	4.21	2.79	2.31×10^{-8}	Oui
int_ag_3	16	22.22	4.12	2.21	1.83×10^{-4}	Oui
int_g_3	17	23.61	3.94	2.97	1.2×10^{-8}	Oui
sel_g_3	18	25.00	4.72	1.65	2.75×10^{-3}	Oui

- On peut représenter l'ensemble des pénalités (significatives ou non) sur un graphique croisé ayant :
 - o en abscisse le pourcentage de consommateurs de chaque catégorie;
 - o en ordonnée la pénalité de la catégorie.

• On peut également ajouter les intervalles de confiance pour les pénalités.

nterprétation :

En règle générale :

- Une catégorie « Pas assez » ou « Trop » est un point d'amélioration si le pourcentage est supérieur à 30%;
- Une catégorie « JAR » est un point fort si le pourcentage est supérieur à 60%, avec une répartition équilibrée des deux autres catégories.

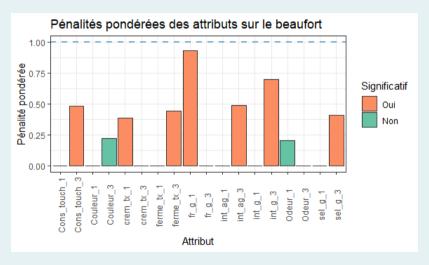
Source: SFAS, 2022.

Exemple

La salinité du beaufort ne peut pas être considérée comme un point fort :

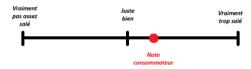
- « Pas assez » salé : 6.9%;
- « JAR » salé : 68.1%
- « Trop » salé : 25%.

😂 La pénalité pondérée :


- Elle est obtenue en multipliant la pénalité d'une appréciation JAR « Trop » ou « Pas assez » par la fréquence des consommateurs ayant choisi cette appréciation.
- Dans notre exemple, on a comme pénalités pondérées
 - o « Pas assez » salé : $3.17 \times 0.0694 \approx 0.22$.
 - \circ « Trop » salé : 1.65 × 0.25 \approx 0.41.

A titre indicatif

- Sur une échelle d'appréciation globale graduée de 1 à 9 :
 - Si la pénalité pondérée est inférieure à 1 alors le défaut est considéré comme mineur.
 - Si la pénalité pondérée est supérieure à 1 alors le défaut est considéré comme majeur.
- Sur une échelle d'appréciation globale graduée de 1 à 6 :
 - Si la pénalité pondérée est inférieure à 0.5 alors le défaut est considéré comme mineur.
 - Si la pénalité pondérée est supérieure à 0.5 alors le défaut est considéré comme majeur.


Exemple

Dans notre exemple sur le beaufort, il n'y a aucun défaut majeur.

3. Analyses sur échelles JAR continues

Selon les études, il es parfois demandé au consommateur de noter chaque attribut sur une échelle **continue** (mesurée, par exemple, de 0 à 10cm).

Chaque variable considérée est alors quantitative (ou numérique).

Exemple

Dans notre exemple des fromages, on pourrait avoir

Produit	Liking	Couleur	Cons_touch	Odeur	int_g	fr_g	sel_g	ferme_tx	crem_tx	int_ag
CE	2.90	4.20	6.20	3.90	3.90	3.90	5.30	3.90	4.20	4.10
М	4.00	4.10	4.10	4.10	6.30	4.10	6.40	3.80	6.30	6.00
В	2.30	5.80	7.40	3.40	3.50	3.20	5.10	7.00	3.90	3.30
R	3.00	5.10	3.10	4.80	4.40	4.30	5.20	3.90	4.80	3.90
C1	4.00	4.00	6.00	4.20	4.00	4.00	7.20	6.30	3.90	3.70
E	1.30	5.10	6.20	3.30	3.70	4.10	5.30	6.00	4.20	4.20

Modèle ANOVA

- On effectue une **analyse de variance** pour chaque attribut, dans le but de les trier du moins au plus discriminant, **tous produits confondus**.
- Le modèle associé est :

$$\mathbf{X}_{i,j}^{(k)} = \mu + \alpha_i^{(k)} + \beta_j^{(k)} + \varepsilon_{i,j}^{(k)}$$

οù

- μ est une constante (appréciation d'un produit de référence par un consommateur de référence);
- $\mathbf{x}_{i,j}^{(k)}$ est la note du consommateur i donnée au produit j pour l'attribut k;
- $\circ \alpha_{i}^{(k)}$ est un effet aléatoire du niveau *i* du facteur *consommateur* pour l'attribut *k*;
- $\circ \beta_j^{(k)}$ est un effet fixe du niveau j du facteur produit pour l'attribut k;
- $\varepsilon_{i,i}^{(k)}$ est une variable aléatoire résiduelle.

Remarques

Dans le modèle

$$\mathbf{X}_{i,j}^{(k)} = \mu + \alpha_i^{(k)} + \beta_j^{(k)} + \varepsilon_{i,j}^{(k)}$$

- Seuls l'effet fixe du produit et l'effet aléatoire du consommateur sont testés.
 - L'effet de l'interaction n'est pas testable, chaque consommateur n'ayant évalué un produit d'une seule fois.
- Cette analyse globale ne permet pas de discerner les différences individuelles entre produits... Il se peut qu'un seul produit soit responsable d'un effet produit.
 - Dans ce cas, on peut effectuer un test de comparaison multiple des moyennes (comme le test de Duncan).

Exemple

On a testé ci-dessous les effets produits des attributs « Goût salé », « Goût fruité » et « Crémeux ».

Produit	sel_g	fr_g	crem_tx
Beaufort (référence)	0.00	0.00	0.00
Cantal1	0.26	-0.19	-0.04
Cantal2	0.27	-0.21	-0.02
Comté	-0.50	-0.26	0.18
Emmental	-0.58	-0.13	-0.09
Morbier	-0.09	-0.03	0.70
Reblochon	-0.60	-0.13	1.22
St-Nectaire	-0.78	-0.43	0.79
Pr > F (Produit)	$< 2 \times 10^{-16}$	0.0541	$< 2 \times 10^{-16}$
F (Produit)	21.836	1.995	36.218

L'attribut « Crémeux » est ici le plus discriminant, avec une statistique de Fisher plus élevée.

L'effet produit n'est même pas significatif pour l'attribut « Goût fruité ».

Analyse par produit

Deux étapes sont nécessaires pour l'étude détaillée d'un attribut *k* d'un seul produit à la fois.

- Calcul de la moyenne sur l'échelle JAR de l'attribut k du produit.
- Comparaison de la moyenne au centre de l'échelle JAR avec un test de Student :

$$T_k = \frac{\sqrt{n-1} \times (\overline{x}_k - m)}{s_k}.$$

οù

- \overline{x}_k est la moyenne du produit pour l'attribut k;
- $s_k^2 = \frac{1}{n} \sum_{i=1}^n (x_i^{(k)} \overline{x}_k)^2$ la variance empirique du produit pour l'attribut k;
- *n* est le nombre de consommateur;
- o *m* est la moyenne à l'idéal *(centre de l'échelle)*.

- Si μ_k est la moyenne théorique du produit pour l'attribut k, on teste $H_0: \mu_k = m$ conre $H_1: \mu_k \neq m$.
- Sous les hypothèses adéquates

$$T_k \sim T_{n-1}$$
.

 $\red{\diamondsuit}$ On rejette H_0 au niveau 95% si $|T_k|>q_{0.975}$ le quantile d'ordre 0.975 de la loi \mathcal{T}_{n-1} .

Exemple

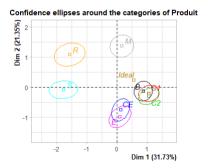
On a testé ci-dessous les différents attributs du beaufort.

Beaufort	Couleur	Cons_touch	Odeur	int_g	fr_g	sel_g	ferme_tx	crem_tx	int_ag
Moyenne	5.46	5.45	4.88	5.22	4.90	5.32	5.32	4.83	5.16
Ecart-type	0.65	0.85	0.79	0.72	0.84	0.56	0.60	0.65	0.80
T calculé	5.95	4.48	-1.25	2.54	-1.01	4.84	4.53	-2.28	1.73
9 0.975	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99	1.99

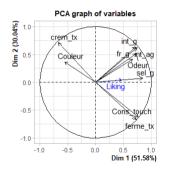
Par exemple, le beaufort a été jugé « idéalement », fruité, mais trop salé et trop ferme.

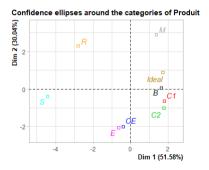
4. Analyse exploratoire des données

On s'intéresse ici aux liens pouvant exister entre les différents attributs sensoriels, et comment un produit se positionne par rapport aux autres.

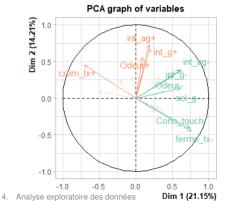

♀ En effet, certains attributs à améliorer peuvent être liées à d'autres...

Si on considère que les différentes notes sont de nature **numérique**, on peut effectuer une **Analyse en Composantes Principales** (ACP).


On crée alors un produit fictif « Ideal », ainsi que des « produits moyens » correspondant aux moyennes obtenues par produit.


 \clubsuit Dans notre cas, l'ACP se fait sur les $8 \times 72 = 576$ données individuelles + le produit « Ideal ».

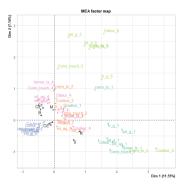
- 🗱 On peut également agréger les données individuelles.
- CACP est alors réalisée sur les « produits moyens ».
- (Dans notre cas, sur les 8 « produits moyens » + le produit fictif « Ideal »)



- Une telle ACP ne tient pas compte du caractère bipolaire des échelles JAR.
- Par exemple, si le comté semble avoir une intensité d'arrière-goût plus faible que la moyenne des tests effectués :
 - Cette intensité est-elle « Trop faible » ?
 - Est-elle « Juste bien », mais elle était trop forte pour l'ensemble des autres fromages?
- On peut re-coder les données en séparant chaque attribut en deux *(dummy variables)* :
 - le niveau JAR est codé 0;
 - les valeurs 1 et 2 sont codées -1 et -2;
 - les valeurs 4 et 5 sont codées 1 et 2.

On obtient alors un tableau comme ci-dessous.

Produit	Liking	Couleur-	Couleur+	Cons_touch-	Cons_touch+
CE	3.00	-1.00	-0.00	0.00	1.00
M	4.00	-1.00	-0.00	-1.00	-0.00
В	2.00	0.00	1.00	0.00	2.00
R	3.00	0.00	0.00	-2.00	-0.00
C1	4.00	-1.00	-0.00	0.00	1.00
E	1.00	0.00	0.00	0.00	1.00

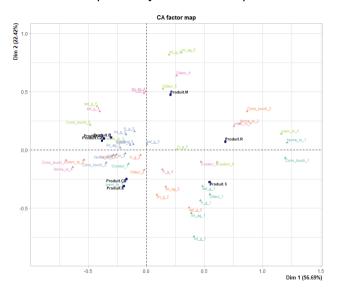


Confidence ellipses around the categories of Produit Dim 2 (14.21%) $_{\Box}R$ -2 -1 Dim 1 (21.15%)

En considérant que les différentes notes sensorielles sont de nature purement qualitative, on peut effectuer une Analyse des Correspondances Multiples (ACM)

3 On retire ici la note d'appréciation globale, et on réalise l'ACM sur les $8 \times 72 = 576$ données individuelles.

La variable catégorielle « Produit » est comptée ici comme une variable qualitative supplémentaire.



🗱 On peut également **agréger** les données individuelles.

On se retrouve alors avec une table de contingence de deux variables qualitatives : « Produit » et « Attribut_Note ».

Produit	Cons_touch_1	Cons_touch_2	Cons_touch_3	Cons_touch_4	Cons_touch_5	Couleur_1
В	2	2	44	18	6	1
C1	2	3	37	28	2	2
C2	0	4	49	14	5	1
CE	0	7	51	14	0	5
E	1	4	52	15	0	1
М	7	35	29	1	0	2
R	27	34	10	1	0	1
S	23	27	22	0	0	0

On effectue ensuite une simple analyse des correspondances.

Résumé

- Echelle Jar = Echelle d'intensité bipolaire.
- Objectifs: identifier les défauts / points forts d'un produit, situer un produit par rapport aux autres.
- Cartographie interne.
- Analyse des pénalités (simple, pondérée).
- Analyse exploratoire : ACP, ACM, agrégation des données.
- Re-codage des attributs JAR en « dummy variables »